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Genome Biology 

The double helix is a sheet of paper  
that genetic messages can be written upon. 

 
The particular sequence of nucleotides in your 
genome, along with your environment and 
experiences, shapes who you are: 

•  Physical traits: Height, hair color, skin color, … 
•  Behavioral traits: Intelligence, Personality, … 
•  Susceptibility to disease, stress, and toxins 
•  Response to drug treatments 
 
Finding changes to genome structure can provide 

powerful clues to its function. 



Genomic Data 

1 Illumina X-Ten sequences the equivalent of  
1 human genome (3Gbp) every minute 

 
Worldwide capacity exceeds 35 Pbp/year 

The instruments provide data, but none of 
the answers to any of our questions.

Who will answer them?

How will they do it?



Sensors & Metadata 
 Sequencers, Microscopy, Imaging, Mass spec, Metadata & Ontologies 

IO Systems 
Hardrives, Networking, Databases, Compression, LIMS 

Compute Systems 
CPU, GPU, Distributed, Clouds, Workflows 

Algorithmics 
Streaming, Sampling, Indexing, Parallel 

Machine Learning 
classification, modeling, 

visualization & data Integration 

 
Domain  
Analysis 

Data Science Technologies 



System Level Advances 

Optimizing data intensive GPGPU computations for DNA sequence alignment 
Trapnell, C, Schatz, MC (2009) Parallel Computing. 35(8-9):429-440. 
 
CloudBurst: Highly Sensitive Read Mapping with MapReduce.  
Schatz, MC (2009) Bioinformatics 25:1363-1369. 
 
Design patterns for efficient graph algorithms in MapReduce. 
Lin, J., Schatz, MC. (2010) Proceedings of the 8th Workshop on Mining and Learning with Graphs 
 
The DNA Data Deluge 
Schatz, MC and Langmead, B (2013) IEEE Spectrum. July, 2013 
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Genomic Data Structures 

Strings 

..TTGAATTACATG..
    |||  |||
    GAA--ACA

Alignment 
Narzisi et al. (2014) Nature Methods 
Lee & Schatz (2012) Bioinformatics 
 

Autism Genetics 
Iossifov et al. (2014) Nature 

Fang et al. (2014) Genome Medicine 
 

Trees 

Suffix Trees 
Marcus et al. (2014) Bioinformatics  
Trapnell & Schatz (2009) Parallel Computing 
 

Microbial Diversity 
Donia et al. (2011) PNAS 

Schatz & Phillippy (2012) GigaScience 
 

Graphs 

String Graphs 
Narzisi et al. (2014) Lecture Notes in CS. 
Koren et al. (2012) Nature Biotechnology 
 

Plant Biology 
Schatz et al. (2014) Genome Biology 

Maron et al. (2013) PNAS 
 



Genomics Graphs 

1.  Error Correction and Assembly 
  Long Read Single Molecule Sequencing 
 
2.  Pan-Genomics 
  Sequence conservation and divergence 



Genome Complexity 

https://en.wikipedia.org/wiki/Genome_size 



Sequence Assembly Problem 

2. Construct assembly graph from overlapping reads 
…AGCCTAGGGATGCGCGACACGT 

       GGATGCGCGACACGTCGCATATCCGGTTTGGTCAACCTCGGACGGAC 
          CAACCTCGGACGGACCTCAGCGAA… 

 1. Shear & Sequence DNA 

3. Simplify assembly graph 
 

On Algorithmic Complexity of Biomolecular Sequence Assembly Problem 
Narzisi, G, Mishra, B, Schatz, MC (2014) Algorithms for Computational Biology. Lecture Notes in Computer Science.  Vol. 8542 



Assembly Complexity 
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 Often an astronomical number of possible assemblies 
–  Value computed by application of the BEST theorem (Hutchinson, 1975) 

 
 
          L = n x n matrix with ru-auu along the diagonal and -auv in entry uv 

   ru = d+(u)+1 if u=t, or d+(u) otherwise 
   auv = multiplicity of edge from u to v 

Counting Eulerian Tours 

ARBRCRD 
or 

ARCRBRD 
A R D 

B 

C 

Assembly Complexity of Prokaryotic Genomes using Short Reads. 
Kingsford C, Schatz MC, Pop M (2010) BMC Bioinformatics. 11:21. 
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Assembly Complexity 

R" R" C" R" D"B"A"

A" R" D"B" C"R" R"

R" R" C" R" D"B"A"

The advantages of SMRT sequencing 
Roberts, RJ, Carneiro, MO, Schatz, MC (2013) Genome Biology. 14:405 



3rd Gen Long Read Sequencing 

PacBio RS II 

CSHL/PacBio 
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3rd Gen Long Read Sequencing 

PacBio RS II 

CSHL/PacBio 

0 10k 20k 30k 40k 

Oxford Nanopore 

CSHL/ONT 

0 10k 20k 30k 40k 



Oxford Nanopore MinION 
•  Thumb drive sized sequencer 

powered over USB 

•  Capacity for 512 reads at once 

•  Senses DNA by measuring 
changes to ion flow 



Nanopore Sequencing 

Basecalling currently performed at Amazon with frequent updates to algorithm 
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Nanopore Readlengths 

Max: 146,992bp  
8x over 20kb 

41x over 10kbp 

Spike-in 

Mean: 5473bp  

noise 

 Oxford Nanopore Sequencing at CSHL 
30 runs, 267k reads, 122x total coverage 

Between 11 and 73k reads per run!  
Mean flow cell: 50 Mbp in 2 days 
Max flow cell: 446Mbp in 2 days 
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Nanopore Alignments 

Max: 50,900bp  
1.8x over 20kb 

13.8x over 10kbp 

Mean: 6903bp  

Alignment Statistics (BLASTN) 
Mean read length at ~7kbp 

Shearing targeted 10kbp 
70k reads align (32%) 

40x coverage 
 



Nanopore Accuracy 
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Alignment Quality (BLASTN) 
Of reads that align, average ~64% identity 
 



Nanopore Accuracy 
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1D mean: 64%
2D mean: 70%

Alignment Quality (BLASTN) 
Of reads that align, average ~64% identity 
“2D base-calling” improves to ~70% identity 



Error Correction Methods 

Quake 

Word Analysis  
of Illumina Reads 

 
Kelly, Schatz, Salzberg (2010) 
Genome Biology. 11:R116 

Histogram of cov

Coverage

De
ns
ity

0 20 40 60 80 100

0.
00
0

0.
00
5

0.
01
0

0.
01
5

!

!

!
!!!!!!!!!!!

!!
!!

!
!
!
!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!
!!!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!
!
!
!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!



Error Correction Methods 

Quake 

Word Analysis  
of Illumina Reads 

 
Kelly, Schatz, Salzberg (2010) 
Genome Biology. 11:R116 
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Error Correction Methods 

PacBioToCA  
& ECTools 

Hybrid Correction 
Of PacBio using Illumina 

 
Koren, Schatz, et al (2012)  
Nature Biotechnology. 30:693–700 

Quake 

Word Analysis  
of Illumina Reads 

 
Kelly, Schatz, Salzberg (2010) 
Genome Biology. 11:R116 
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NanoCorr: Nanopore-Illumina  
Hybrid Error Correction 

1.  BLAST Miseq reads to all raw Oxford 
Nanopore reads

2.  Select non-repetitive alignments
○  First pass scans to remove “contained” 

alignments
○  Second pass uses Dynamic 

Programming (LIS) to select set of high-
identity alignments with minimal 
overlaps

3.  Compute consensus of each Oxford 
Nanopore read
○  State machine of most commonly 

observed base at each position in read

https://github.com/jgurtowski/nanocorr 

85 90 95 100

0
50
00

10
00
0

15
00
0

20
00
0

25
00
0

30
00
0

0

0

Post-correction %ID 
Mean: ~97% 

Oxford Nanopore Sequencing and de novo Assembly of a Eukaryotic Genome
Goodwin, S, Gurtowski, J et al. (2015) bioRxiv doi: http://dx.doi.org/10.1101/013490



Long Read Assembly 
S288C Reference sequence 
•  12.1Mbp; 16 chromo + mitochondria; N50: 924kbp 
 



Genomic Futures? 



iGenomics: Mobile Sequence Analysis 

The worlds first genomics analysis 
app for iOS devices 

 
BWT + Dynamic Programming + UI 
 
First application:  
•  Handheld diagnostics and 

therapeutic recommendations for 
influenza infections 

 
•  Coming soon to the App Store 
 

Future applications
•  Pathogen detection
•  Food safety
•  Biomarkers
•  etc..

Aspyn Palatnick, Elodie Ghedin, Michael Schatz 



Genomics Graphs 

1.  Error Correction and Assembly 
  Long Read Single Molecule Sequencing 
 
2.  Pan-Genomics 
  Sequence conservation and divergence 



Pan-Genome Alignment & Assembly 

SplitMEM: A graphical algorithm for pan-genome analysis with suffix skips 
Marcus, S, Lee, H, Schatz, MC (2014) Bioinformatics. doi: 10.1093/bioinformatics/btu756 

Pan-genome colored de Bruijn graph
•  Encodes all the sequence 

relationships between the genomes
•  How well conserved is a given 

sequence?  
•  What are the pan-genome 

network properties?

Time to start considering problems 
for which N complete genomes is the 
input to study the “pan-genome”
•  Available today for many microbial 

species, near future for higher 
eukaryotes

A"
B"
C"
D"



Graphical pan-genome analysis 
Colored de Bruijn graph 
•  Node for each distinct kmer 
•  Directed edge connects consecutive kmers 
•  Nodes overlap by k-1 bp 

AGA 

GAA 

AAG 

TCC 

GTC 

AGT 

TAA 

ATA 

GTT 

TTA 

AGAAGTCC
 

ATAAGTTA

de Bruijn, 1946 
Idury and Waterman, 1995 
Pevzner, Tang, Waterman, 2001 



Graphical pan-genome analysis 
Colored de Bruijn graph 
•  Node for each distinct kmer 
•  Directed edge connects consecutive kmers 
•  Nodes overlap by k-1 bp 

AGAA 

AAGT 

GTCC 

ATAA GTTA 

More specifically:
•  We aim to build the compressed de Bruijn graph as quickly as possible without 

considering every distinct kmer

AGAAGTCC
 

ATAAGTTA



•  Special suffix links navigate between internal 
nodes corresponding to consecutive substrings 
(xα -> α) without returning to root 

 

Suffix Trees  

Linear pattern matching algorithms. 
Weiner, P. (1973) 14th Annual IEEE Symposium on Switching and Automata Theory. 
 

On-line Construction of Suffix Trees 
Ukkonen, E. (1995) Algorithmica. 

Elegant, widely used full text index 
•  Rooted, directed tree with a leaf 

corresponding to each suffix  

•  Path from root to leaf i spells suffix S[i . . . n].  

•  Each internal node has at least two distinct 
children except possibly the root 

Many important search problems can be solved  
in linear time and space 

S = banana$



Defini&on:""
A"MEM"is"an"exact"match"within"a"sequence"that"cannot"be"
extended"le:"or"right"without"introducing"a"mismatch."

…XGATTACAW… …YGATTACAZ…
"

Key+Proper&es:""
•  MEMs"are"internal"nodes"in"the"suffix"tree"that"have"le:@

diverse"descendants.""
•  Have"descendant"leaves"that"represent"suffixes"with"different"
characters"preceding"them"

•  Linear2&me+traversal+of+suffix+tree+to+iden&fy+MEMs.+

Maximal Exact Matches (MEMs) 



MEMs to compressed !
de Bruijn Graphs

 GCA

T G C A C … G G C A A  



Overlapping MEMs 

T G C C AT C G C C A A C C AT G  

T G C C AT C G C C A A C C AT G  

 CAT

 GCC

 CCA



1. Find nodes representing repeated sequences 
1.  Build suffix tree of genome 
2.  Mark internal nodes that are MEMs, length ≥ k 
3.  Preprocess suffix tree for LMA queries 
 
4.  Determine repeat-nodes of compressed de 

Bruijn graph by decomposing MEMs and 
extracting overlapping components, length ≥ k 

2.  Finalize graph with nodes and edges of unique 
sequences 

SplitMEM Sketch 



…" …" …" …"

 x y z α β α
  β
"

z  α

"

MEM"

MEM"

" "   x"x "y "z " "α   β       y"x "y "z " "α   β        u" "α   γ "

Find"deepest"MEM"in"suffix"tree."

Split MEMs to de Bruijn Graph 
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 x y z α β

Split MEMs to de Bruijn Graph 
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…" …" …" …"
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…" …" …" …"

 α

 α�β α�γ

 x y z �α
 u�α

 α
  β
"

z  α

"

MEM"

MEM"

" "   x"x "y "z " "α   β       y"x "y "z " "α   β        u" "α   γ "

Found"MEM"as"ancestor.""Decompose."
Remove"embedded"MEM"(suffix"links)."Find"next"embedded"MEM."

Split MEMs to de Bruijn Graph 



Skip c characters in log(c) steps instead of c suffix links
•  Pointer jumping technique: n->ss[i] = n->ss[i-1]->ss[i-1]

Suffix skips 0 
(dist = 1; suffix links) 

Suffix skips 1 
(dist=2) 

Suffix skips 2 
(dist=4) 

Suffix Skips 
Genome: babab 



Microbial Pan-Genomes 
E. coli (62) and B. anthracis (9) pan-genome analysis
•  Analyzed all available strains in Genbank
•  Space is linear in the number of genomes
•  Time is O(n log g) where g is the length of the longest genome

•  Linear time for most practical applications

•  Many possible applications: 
•  Identifying “core” genes present in all strains
•  Characterizing highly variable regions 
•  Cataloging sequences shared by pathogenic varieties

62 strain E. coli Pan-Genome Node Sharing



The Rise of Pan-Genomics 

Extending reference assembly models 
Church et al (2015) Genome Biology. 16:13  doi:10.1186/s13059-015-0587-3 

Human Pan-Genomics 
•  We now have the capacity to consider the 

pan-genome structure of the human 
population and other high value species 

•  Already the current human reference genome 
has “alternate” sequence paths representing 
major differences between the different 
ethnicities (haplotype groups) 

•  However, virtually none of existing genomics algorithms operate on reference 
graphs, creating a major opportunity for research: 

•  New and interesting CS problems 
•  Online graph construction, searching, annotating, visualizing… 

•  New and interesting biology 
•  Detailed analysis of mutation, disease, and evolution 



Interfacing CS & Biology 
Theory & Programming Languages 
•  How can we efficiently search & analyze genomic data?  
•  How do natural systems use abstraction or recursive processing? 
 
Systems 
•  How do we scale to exascale or zettascale genomic data?  
 
Information Security 
•  How do we balance the benefits of sharing genomic data with potential privacy abuses? 

Machine Learning & Data Intensive Computing 
•  How do we learn from high dimensional biological data? 

Language & Speech Processing 
•  How do we recognize important features of sequences and other bio-molecular data? 
 
Robotics, Vision & Graphics 
•  How do we integrate and model molecular with behavioral data? 



Understanding Genome  
Structure & Function 

Genomics is a rich field for computer science research 
–  Opportunities across the entire data science spectrum from 

sensors & data systems, through algorithmics and machine learning 

Sequencing Algorithmics 
–  Long reads and other sequencing technologies are giving us great 

power to look into genomes across the tree of life 
–  With these advances, expect the rise of graph-based pan-genomics 

giving us new insights into the origins of disease, the processes of 
development, and the forces of evolution 

 
 
 
 

Also very interested in teaching the next generation of
undergraduate and graduate students
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